Exploiting the Functional Training Approach in B-Splines

نویسندگان

  • António E. Ruano
  • Cristiano Cabrita
  • Pedro M. Ferreira
  • László T. Kóczy
چکیده

When used for function approximation purposes, neural networks belong to a class of models whose parameters can be separated into linear and nonlinear, according to their influence in the model output. This concept of parameter separability can also be applied when the training problem is formulated as the minimization of the integral of the (functional) squared error, over the input domain. Using this approach, the computation of the gradient involves terms that are dependent only on the model and the input domain, and terms which are the projection of the target function on the basis functions and on their derivatives with respect to the nonlinear parameters, over the input domain. These later terms can be numerically computed with the data. The use of the functional approach is introduced here for B-splines. An example shows that, besides great computational complexity savings, this approach obtains better results than the standard, discrete technique, as the performance surface employed is more similar to the one obtained with the function underlying the data. In some cases, as shown in the example, a complete analytical solution can be found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of functional integral equations by using B-splines

This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.

متن کامل

GENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES

In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total ...

متن کامل

A FILTERED B-SPLINE MODEL OF SCANNED DIGITAL IMAGES

We present an approach for modeling and filtering digitally scanned images. The digital contour of an image is segmented to identify the linear segments, the nonlinear segments and critical corners. The nonlinear segments are modeled by B-splines. To remove the contour noise, we propose a weighted least q m s model to account for both the fitness of the splines as well as their approximate cur...

متن کامل

Local and Global Approaches to Fracture Mechanics Using Isogeometric Analysis Method

The present research investigates the implementations of different computational geometry technologies in isogeometric analysis framework for computational fracture mechanics. NURBS and T-splines are two different computational geometry technologies which are studied in this work. Among the features of B-spline basis functions, the possibility of enhancing a B-spline basis with discontinuities ...

متن کامل

A new approach to semi-cardinal spline interpolation

The problem of semi-cardinal spline interpolation was solved by Schoenberg exploiting the piecewise polynomial form of the splines. In the present paper, we propose a new construction for the Lagrange functions of semi-cardinal spline interpolation , based on a radial basis and Fourier transform approach. This approach suggests a way of extending semi-cardinal interpolation to polyharmonic spli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012